167 research outputs found

    Recurring genomic breaks in independent lineages support genomic fragility

    Get PDF
    BACKGROUND: Recent findings indicate that evolutionary breaks in the genome are not randomly distributed, and that certain regions, so-called fragile regions, are predisposed to breakages. Previous approaches to the study of genomic fragility have examined the distribution of breaks, as well as the coincidence of breaks with segmental duplications and repeats, within a single species. In contrast, we investigate whether this regional fragility is an inherent genomic characteristic and is thus conserved over multiple independent lineages. RESULTS: We do this by quantifying the extent to which certain genomic regions are disrupted repeatedly in independent lineages. Our investigation, based on Human, Chimp, Mouse, Rat, Dog and Chicken, suggests that the propensity of a chromosomal region to break is significantly correlated among independent lineages, even when covariates are considered. Furthermore, the fragile regions are enriched for segmental duplications. CONCLUSION: Based on a novel methodology, our work provides additional support for the existence of fragile regions

    Increasing Alternative Promoter Repertories Is Positively Associated with Differential Expression and Disease Susceptibility

    Get PDF
    Background: Alternative Promoter (AP) usages have been shown to enable diversified transcriptional regulation of individual gene in a context-specific (e.g., pathway, cell lineage, tissue type, and development stage et. ac.) way. Aberrant uses of APs have been directly linked to mechanism of certain human diseases. However, whether or not there exists a general link between a gene’s AP repertoire and its expression diversity is currently unknown. The general relation between a gene’s AP repertoire and its disease susceptibility also remains largely unexplored. Methodology/Principal Findings: Based on the differential expression ratio inferred from all human microarray data in NCBI GEO and the list of disease genes curated in public repositories, we systemically analyzed the general relation of AP repertoire with expression diversity and disease susceptibility. We found that genes with APs are more likely to be differentially expressed and/or disease associated than those with Single Promoter (SP), and genes with more APs are more likely differentially expressed and disease susceptible than those with less APs. Further analysis showed that genes with increased number of APs tend to have increased length in all aspects of gene structure including 39 UTR, be associated with increased duplicability, and have increased connectivity in protein-protein interaction network. Conclusions: Our genome-wide analysis provided evidences that increasing alternative promoter repertories is positivel

    Generalizations of Markov model to characterize biological sequences

    Get PDF
    BACKGROUND: The currently used k(th )order Markov models estimate the probability of generating a single nucleotide conditional upon the immediately preceding (gap = 0) k units. However, this neither takes into account the joint dependency of multiple neighboring nucleotides, nor does it consider the long range dependency with gap>0. RESULT: We describe a configurable tool to explore generalizations of the standard Markov model. We evaluated whether the sequence classification accuracy can be improved by using an alternative set of model parameters. The evaluation was done on four classes of biological sequences – CpG-poor promoters, all promoters, exons and nucleosome positioning sequences. Using di- and tri-nucleotide as the model unit significantly improved the sequence classification accuracy relative to the standard single nucleotide model. In the case of nucleosome positioning sequences, optimal accuracy was achieved at a gap length of 4. Furthermore in the plot of classification accuracy versus the gap, a periodicity of 10–11 bps was observed which might indicate structural preferences in the nucleosome positioning sequence. The tool is implemented in Java and is available for download at . CONCLUSION: Markov modeling is an important component of many sequence analysis tools. We have extended the standard Markov model to incorporate joint and long range dependencies between the sequence elements. The proposed generalizations of the Markov model are likely to improve the overall accuracy of sequence analysis tools

    A Tutorial of the Poisson Random Field Model in Population Genetics

    Get PDF
    Population genetics is the study of allele frequency changes driven by various evolutionary forces such as mutation, natural selection, and random genetic drift. Although natural selection is widely recognized as a bona-fide phenomenon, the extent to which it drives evolution continues to remain unclear and controversial. Various qualitative techniques, or so-called “tests of neutrality”, have been introduced to detect signatures of natural selection. A decade and a half ago, Stanley Sawyer and Daniel Hartl provided a mathematical framework, referred to as the Poisson random field (PRF), with which to determine quantitatively the intensity of selection on a particular gene or genomic region. The recent availability of large-scale genetic polymorphism data has sparked widespread interest in genome-wide investigations of natural selection. To that end, the original PRF model is of particular interest for geneticists and evolutionary genomicists. In this article, we will provide a tutorial of the mathematical derivation of the original Sawyer and Hartl PRF model

    Motifs and cis-regulatory modules mediating the expression of genes co-expressed in presynaptic neurons

    Get PDF
    An integrative strategy of comparative genomics, experimental and computational approaches reveals aspects of a regulatory network controlling neuronal-specific expression in presynaptic neurons

    CYNTENATOR: Progressive Gene Order Alignment of 17 Vertebrate Genomes

    Get PDF
    Whole genome gene order evolution in higher eukaryotes was initially considered as a random process. Gene order conservation or conserved synteny was seen as a feature of common descent and did not imply the existence of functional constraints. This view had to be revised in the light of results from sequencing dozens of vertebrate genomes

    Position and distance specificity are important determinants of cis-regulatory motifs in addition to evolutionary conservation

    Get PDF
    Computational discovery of cis-regulatory elements remains challenging. To cope with the high false positives, evolutionary conservation is routinely used. However, conservation is only one of the attributes of cis-regulatory elements and is neither necessary nor sufficient. Here, we assess two additional attributes—positional and inter-motif distance specificity—that are critical for interactions between transcription factors. We first show that for a greater than expected fraction of known motifs, the genes that contain the motifs in their promoters in a position-specific or distance-specific manner are related, both in function and/or in expression pattern. We then use the position and distance specificity to discover novel motifs. Our work highlights the importance of distance and position specificity, in addition to the evolutionary conservation, in discovering cis-regulatory motifs

    Inferring evolution of gene duplicates using probabilistic models and nonparametric belief propagation

    Get PDF
    Gene duplication, followed by functional evolution of duplicate genes, is a primary engine of evolutionary innovation. In turn, gene expression evolution is a critical component of overall functional evolution of paralogs. Inferring evolutionary history of gene expression among paralogs is therefore a problem of considerable interest. It also represents significant challenges. The standard approaches of evolutionary reconstruction assume that at an internal node of the duplication tree, the two duplicates evolve independently. However, because of various selection pressures functional evolution of the two paralogs may be coupled. The coupling of paralog evolution corresponds to three major fates of gene duplicates: subfunctionalization (SF), conserved function (CF) or neofunctionalization (NF). Quantitative analysis of these fates is of great interest and clearly influences evolutionary inference of expression. These two interrelated problems of inferring gene expression and evolutionary fates of gene duplicates have not been studied together previously and motivate the present study. Here we propose a novel probabilistic framework and algorithm to simultaneously infer (i) ancestral gene expression and (ii) the likely fate (SF, NF, CF) at each duplication event during the evolution of gene family. Using tissue-specific gene expression data, we develop a nonparametric belief propagation (NBP) algorithm to predict the ancestral expression level as a proxy for function, and describe a novel probabilistic model that relates the predicted and known expression levels to the possible evolutionary fates. We validate our model using simulation and then apply it to a genome-wide set of gene duplicates in human. Our results suggest that SF tends to be more frequent at the earlier stage of gene family expansion, while NF occurs more frequently later on.https://doi.org/10.1186/1471-2164-14-S1-S1

    Functional divergence of gene duplicates – a domain-centric view

    Get PDF
    Gene duplicates have been shown to evolve at different rates. Here we further investigate the mechanism and functional underpinning of this phenomenon by assessing asymmetric evolution specifically within functional domains of gene duplicates. Based on duplicate genes in five teleost fishes resulting from a whole genome duplication event, we first show that a Fisher Exact test based approach to detect asymmetry is more sensitive than the previously used Likelihood Ratio test. Using our Fisher Exact test, we found that the evolutionary rate asymmetry in the overall protein is largely explained by the asymmetric evolution within specific protein domains. Moreover, among cases of asymmetrically evolving domains, for the gene copy containing a fast evolving domain, the non-synonymous substitutions often cluster within the fast evolving domain. We found that rare substitutions were preferred within asymmetrically evolving domains suggestive of functional divergence. While overall ~32 % of the domains tested were found to be evolving asymmetrically, certain protein domains such as the Tyrosine and Ser/Thr Kinase domains had a much greater prevalence of asymmetric evolution. Finally, based on the spatial expression of Zebra fish duplicate proteins during development, we found that protein pairs containing asymmetrically evolving domains had a greater divergence in gene expression as compared to the duplicate proteins that did not exhibit asymmetric evolution. Taken together, our results suggest that the previously observed asymmetry in the overall duplicate protein evolution is largely due to divergence of specific domains of the protein, and coincides with divergence in spatial expression domains.https://doi.org/10.1186/1471-2148-12-12

    MetaProm: a neural network based meta-predictor for alternative human promoter prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>De novo eukaryotic promoter prediction is important for discovering novel genes and understanding gene regulation. In spite of the great advances made in the past decade, recent studies revealed that the overall performances of the current promoter prediction programs (PPPs) are still poor, and predictions made by individual PPPs do not overlap each other. Furthermore, most PPPs are trained and tested on the most-upstream promoters; their performances on alternative promoters have not been assessed.</p> <p>Results</p> <p>In this paper, we evaluate the performances of current major promoter prediction programs (i.e., PSPA, FirstEF, McPromoter, DragonGSF, DragonPF, and FProm) using 42,536 distinct human gene promoters on a genome-wide scale, and with emphasis on alternative promoters. We describe an artificial neural network (ANN) based meta-predictor program that integrates predictions from the current PPPs and the predicted promoters' relation to CpG islands. Our specific analysis of recently discovered alternative promoters reveals that although only 41% of the 3' most promoters overlap a CpG island, 74% of 5' most promoters overlap a CpG island.</p> <p>Conclusion</p> <p>Our assessment of six PPPs on 1.06 × 10<sup>9 </sup>bps of human genome sequence reveals the specific strengths and weaknesses of individual PPPs. Our meta-predictor outperforms any individual PPP in sensitivity and specificity. Furthermore, we discovered that the 5' alternative promoters are more likely to be associated with a CpG island.</p
    corecore